Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin.
نویسندگان
چکیده
Fibrin sealants are a type of soft tissue adhesive that employs biochemical reactions from the late stages of the blood coagulation cascade. Intrinsic to these adhesives are a structural protein and a transglutaminase crosslinking enzyme. We are investigating an alternative biomimetic adhesive based on gelatin and a calcium-independent microbial transglutaminase (mTG). Rheological measurements show that mTG catalyzes the conversion of gelatin solutions into hydrogels, and gel times are on the order of minutes depending on the gelatin type and concentration. Tensile static and dynamic loading of the adhesive hydrogels in bulk form demonstrated that the Young's modulus ranged from 15 to 120 kPa, and these bulk properties were comparable to those reported for hydrogels obtained from fibrin-based sealants. Lap-shear adhesion tests of porcine tissue were performed using a newly published American Society for Testing and Materials (ASTM) standard for tissue adhesives. The gelatin-mTG adhesive bound the opposing tissues together with ultimate adhesive strengths of 12-23 kPa which were significantly higher than the strength observed for fibrin sealants. Even after failure, strands of the gelatin-mTG adhesive remained attached to both of the opposing tissues. These results suggest that gelatin-mTG adhesives may offer the benefits of fibrin sealants without the need for blood products.
منابع مشابه
Cell delivery using an injectable and adhesive transglutaminase-gelatin gel.
In this study, we developed an injectable gelatin-transglutaminase (TGase) gel for cell delivery. The procedure provides a minimally invasive approach to deliver cells into tissue in a manner that improves localization. The results indicate gelatin-TGase to be noncytotoxic and to have adhesive properties that help localize and prevent the scattering of the cells after delivery. The in situ cros...
متن کاملManufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...
متن کاملPreparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase
Microbial transglutaminase (mTG) was used as a crosslinking agent in the preparation of gelatin sponges. The physical properties of the materials were evaluated by measuring their material porosity, water absorption, and elastic modulus. The stability of the sponges were assessed via hydrolysis and enzymolysis. To study the material degradation in vivo, subcutaneous implantations of sponges wer...
متن کاملEnzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications.
We compared the ability of two enzymes to catalyze the formation of gels from solutions of gelatin and chitosan. A microbial transglutaminase, currently under investigation for food applications, was observed to catalyze the formation of strong and permanent gels from gelatin solutions. Chitosan was not required for transglutaminase-catalyzed gel formation, although gel formation was faster, an...
متن کاملA biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular beh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2004